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I n  part 1 of this work (Brown & Stewartson 1980b) we examined the nonlinear inter- 
action of a forced internal gravity wave in a stratified fluid with its critical level. 
Although the Richardson number J was taken to  be large, the method described 
there was, in principle, applicable to all Richardson numbers and as such we did not 
take advantage of the asymptotic properties of the solution of the linearized equations. 
Here in part 2 we re-develop the linearized solution for a general basic shear and 
temperature profile when J > 1 as the large-time 1;mit of an initial-value problem for 
a wave incident from above the shear layer. On this time scale it is known that the 
reflection and transmission coefficients are O(e-vn), v = ( J  - &)&. It is shown that, 
when J 9 1, the solution in the neighbourhood of the critical layer consists only of 
algebraically decaying elements with a direction of propagation parallel to the layer 
(critical-level noise) below a certain level, but of critical-level noise and a wavelike term, 
corresponding to the imposed incident wave, above this level. On a longer time scale, 
specifically t = O ( B - ~ ) ,  where E is the amplitude of the forced wave, the nonlinear terms 
are no longer negligible; the development of the reflection and transmission coefficients 
on this time scale is the subject of part 3 (Brown & Stewartson 1982). 

1. Introduction 
I n  common with many other unbounded flows a small perturbation to  the stream 

function of a parallel shearing motion of a stably stratified fluid generally consists of 
two components. Firstly it may contain wavelike elements, generally of the form 

f ( Y L  (1.1) ,$a@-&) 

where a, c are constants, x, y measure distance respectively parallel and normal to  
the direction of motion of the basic flow, and f satisfies a certain ordinary differential 
equation. In  particular, if there is no shearfis also exponential, and the perturbation 
is known as an internal wave with a definite phase velocity and direction of propaga- 
tion. Secondly i t  may contain algebraic elements of the asymptotic form, when t is 
large and t > v, 

(Booker & Bretherton 1967; Brown & Stewartson 1980a), where v depends on the 
local Richardson number (supposed greater than a), U(y) is the local velocity of the 
fluid and YP an arbitrary function of y. Either by inspection or by examining the method 
of derivation, we can see that (1.2) has the physical interpretation of disturbances 
being carried along the streamlines of t,he basic flow. Thus the direction of the energy 

Y) (1.2) t i i v - 8  eia[x-U(y)tl Y( 
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propagation and of the group velocity is horizontal. Generally these elements corres- 
pond to a decaying velocity and may be neglected after a sufficiently long time from 
the setting up of perturbations and we are left with the more conventional wavelike 
solution only. However, this is not always the case and our aim in this paper and in 
part 3 is to  describe a situation in which modes like (1.2) play a significant role in 
controlling the evolution of the disturbance, broadly because Y ( y )  becomes large a t  
one value of y .  

We consider a flow field in which the shear is confined to within a finite distance of 
the plane y = 0, but the stratification extends indefinitely both above and below this 
region. An internal wave is supposed generated at large positive values of y and 
propagates towards the shear layer. We choose a set of moving axes so that this 
incident wave once set up can be regarded as static, and examine its long-time inter- 
action with the shear layer in the case when U ( y )  vanishes a t  y = 0. In  physical terms 
this means that the x-component of the phase velocity of the wave coincides with the 
shear velocit’y at one point of the shear layer. We shall also suppose that the local 
Richardson number is everywhere large; then Booker & Bretherton (1967) have 
established that on reaching this line, known as the critical level, the wave is absorbed, 
both the reflected and transmitted raves being exponentially small. We shall examine 
the nature of this absorption more closely when v $ 1 and shall find that there is in 
fact a transition of the wave from ( 1 . 1 )  to the form (1.2). At first sight this appears 
surprising since (!.2) decays with time but it is consistent since f ( y )  N Y:-~” while 
Y ( y )  - y-l in a certain sense as y+O. Hence a transition is feasible when yt - 1 .  
Strictly the transition level occurs a t  aU’(0) yt  = v,  when t v and takes place over a 
distance O(vi / t ) .  The form ( 1 . 1 )  appears only when aU‘(0) yt > v,  while the form (1.2) 
with Y - t(aU‘(0) yt  - v)-l appears on both sides, the singularity being smoothed out 
in the transition zone. There is, however, a pronounced decrease in the amplitude of 
the disturbance at this transition, it being smaller by a factor v-4 ahead of the wave 
front. This absorption may be interpreted as the piling up of the disturbance behind 
the wave front (at aU’(0) y = v / t ) ,  which is moving ever more slowly towards the 
critical level, reaching it at an infinite time after the forcing started. In  addition, there 
is some conversion of the structure into the other eigensolution corresponding to wave 
propagation along the shear layer with the local stream velocity. As t + 00 these two 
types of solution are almost comparable in size in the critical layer, the second being 
smaller than the first by a factor v-h, and we shall refer to  this second type as critical- 
layer noise (CL-noise). As 1 yI increases, however, the relative size of the two types falls 
to O( vt-g) and the CL-noise becomes indistinguishable from disturbances of the form 
(1.2) generated from other sourccs such as initial effects; we shall refer to  such 
disturbances as noise. For moderate values of v we may expect that an increased 
portion of the disturbance is converted into CL-noise and, when Y is small enough 
(ern - I ) ,  that there will be some reflection and transmission from the linearized 
theory. 

It is now natural to enquire whether a reverse transition can occur and whether 
noise can be converted into a propagating wave of the form ( l . l ) ,  which would have 
to  be either a reflected or transmitted wave. Such a question would only have signifi- 
cance for the critical-layer noise, which is of a larger order of magnitude than the 
background noise and may be distinguished from it. We have already shown in part I 
(Brown & Stewartson 1980b) that a nonlinear wave can be reflected from the critical 
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level, but the method adopted enabled us to construct only the leading term in the 
amplitude of this wave and did not explain how it is generated. Furthermore, no 
evidence was found for a transmitted wave, even allowing for nonlinear effects. 

We develop here a more detailed account of the structure of the nonlinear evolution 
of the wave interaction near the critical level and demonstrate first of all that if 
attention is confined to that part of the wave defined by ( 1.1 ) there can be no additional 
waves generated. This can only come about by considering the nonlinear interaction 
of (1.1) with the CL-noise defined by (1.2) or even of (1.2) with itself. At each stage of 
the expansion these nonlinear interactions among the terms already calculated can be 
regarded as distributed sources for the new term. I n  general, this term will be of a 
similar form to the forcing term and hence will be interpretable as CL-noise and will 
ultimately merge in with the background noise for 171 > 1, where 7 = aU’(O)yt/v.  
The reason is that any additional terms would be eigensolutions (or complementary 
functions) of the linearized equations for small disturbances near y = 0.  They would 
have to satisfy regularity conditions a t  y = 0 and must not be representable as inward- 
moving waves when 171 B 1.  These conditions are sufficient to exclude them. An 
exception occurs if the forced term is singular a t  one value, yo say, of 7, for the singu- 
larity can be removed by adding an eigenfunction in either 7 > v0 or 7 < qo without 
itsviolatingthese conditions. The singularityin the forced term a t  7 = qo is defined here 
to  be resonance. We note that it is a different phenomenon from the more conventional 
resonant wave-wave interaction (e.g. Phillips 1966) in that it occurs at one value of 
7 only, rather than for all 7.  The first resonance appears a t  the third stage of the 
expansion and occurs a t  7 = a( I + 4 5 ) 2 ,  and leads to an eigensolution in 7 > ?lo only. 
For large 7 this has the form of a reflected wave with the same wavelength as the 
incident wave and the amplitude is computed to be the same as that obtained in the 
previous study. Continuing, another appears a t  the fourth stage, occurring at 
7 = 2 + J3,  and for large 7 may be interpreted as a reflected wave of half the wave- 
length of the incident wave, i.e. the first harmonic. It becomes clear that as the 
expansion is continued an infinite number of resonances will be generated, leading to 
a reflected wave containing all the harmonics of the primary wave. The situation is 
similar in fact to the studies of nonlinear critical layers in geostrophic flows by 
Stewartson (1978), Brown & Stewartson (1978), Warn & Warn (1976, 1978), B6land 
(1976), in which it was found that an incident wave generated all the harmonics as 
a result of nonlinear interactions in the critical region. Then, however, the relative 
simplicity of the governing equations enabled much greater information to  be extracted 
and even a description of the flow field in the final stages of the nonlinear evolution to 
be obtained. 

A resonance leading to an eigensolution in 7 < $(4+ 4 7 )  only (71 > $(4+47)  being 
excluded because it would correspond to  an incident wave) occurs at the fourth stage 
and is a first harmonic, but i t  remains of the form (1.2) even when 7 is large and 
negative. Thus it is not a transmitted wave. Nevertheless, as the expansion is continued 
this eigensolution continues to interact with the CL-noise from the incident wave in 
7 < 1 and eventually a t  the ninth stage in the expansion a resonance appears a t  a 
negative value of 11 which produces a transmitted wave: otherwise the regularity 
condition a t  7 = 0 would be violated. The first such wave we have found has the same 
wavelength as the incident wave but it seems clear that on continuing the expansion 
all the harmonics will ultimately be generated. 

8 F L M  115 
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We conclude that, for v B 1, when nonlinear effects are taken into account, the 
critical layer is not a total absorber of the incident wave but acts on i t  in a very subtle 
way, eventually returning some of it first as a reflected wave and then, r.uch later on, 
as a transmitted wave. 

The plan of parts 2 and 3 of this work is as follows. I n  this paper we concentrate on 
setting up the basic structure of the linearized disturbance in the shear layer in a form 
suitable for the computation of the nonlinear disturbance. Part of this structure is 
associated with the initial perturbation applied (i.e. a t  t = 0) and depends crucially on 
its properties. Thus, if a t  large times the nonlinear disturbance can be calculated 
completely to a particular order of magnitude only (say as far as the square of the 
amplitude of the initial disturbance) by including such structure, then there is a t  
present little point in carrying out this task, since the result contains a large measure 
of arbitrariness. We shall show, in 3 3, that  the CL-noise is independent of such initial 
perturbations, being fixed by the permanent source of the wave motion outside the 
shear layer and dependent on its large-time behaviour. Thus it is legitimate to investi- 
gate the interaction between the incidcnt wave and this part of the noise. Finally, we 
examine the structure of the solution in the critical layer with the aim of obtaining an 
explicit form when v 9 1 that is easier to manipulate than that obtained in part 1 .  
There we obtained it as an Hadamard infinite integral that is exact for all v and, 
provided it can be handled appropriately, is suitable for computing reflection and 
transmission coefficients. However, as found there, the details of the computation 
rapidly became unmanageable. Now we relax the requirement that the linearized 
solution be exact and obtain instead the leading term of an asymptotic expansion 
valid when v 9 1 so that the nonlinear terms may be calculated explicitly and much 
more information obtained about the properties of the reflection and transmission 
coefficients. This task is carried out in part 3 (Brown & Stewartson 1982), and for an 
explanation in broad terms of the steps in that part of the argument we refer the 
reader to $1 of that paper. 

2. The basic equations 
The physical situation is exactly that of part 1, with an inviscid shear layer sepa- 

rating two parallel streams of fluid in motion, the velocity and density gradient in 
each stream being uniform but different. We choose orthogonal Cartesian axes 
Ox*y* with origin at some point in the shear layer; Ox* is parallel to the direction of 
the streams and 0 is moving along the x* axis with the local fluid velocity. We 
non-dimensionalize the physical variables with a reference speed V*,  length L* 
and temperature T: as appropriate, and write the stream function and tempera- 
ture as basic states together with perturbations E ~ ( x ,  y, t ) ,  eT(x,  y, t ) ,  where e is an 
arbitrary constant and t is the time. Then if, as in part 1 ,  the equatior, of state is 
taken to be linear and the Boussinesq approximation is applied, the appropriate 
equations 
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I n  (2 .1) ,  U(y), -R'(y) are the undisturbed velocity and density in the shear layer, 
and J is a representative Richardson number with 

, (2.2) J = p*T$ g"L* V*-2 

g* being the acceleration due to  gravity and p* the coefficient of volume expansion. 
A fundamental assumption in this paper is that J $ 1. 

I n  part 1 we went on to choose a hyperbolic-tangent velocity profile and a special 
form of the density gradient in order that the linear steady equations, with E = 0, 
possessed an analytic solution for all J, which was then examined for J >> 1 .  The 
purpose of this was to inspire confidence in the complicated procedure me then applied 
to the nonlinear terms, some of which were exponentially small in J .  However, once 
the principles there established are accepted, there is an advantage in working with 
J 9 1 ab initio, in which case i t  is possible to leave C(y), R(y) unrestricted except for 
the requirement that U'(y) and R'(y) be everywhere positive, U ( 0 )  = 0, and U(y) 
and R'(y) tend to limits as IyI +GO. The constant E in (2.1) will later be taken as small 
and identified with the amplitude of the incoming plane wave. 

Also in part 1 we summarized the results of Booker & Bretherton (1967) on the 
direction of propagation of plane-wave solutions of (2.1) with e = 0 and IyI 9 1. 
There we took U(c0) = - U (  - 03) = R'( f GO) = 1, but the generalization is immediate. 

Outside the shear layer we are assuming a quasi-steady disturbance in which for 
y 9 1 there is a forced wave of given amplitude incident on the shear layer from above. 
This is given by a solution of ( 2 . 1 )  with E = 0 which has an exponential factor 

t'"ar+my), UZ(C0) (a2+ m2) = JR'(0O) (a, m > 0). (2 .3)  

On entering the shear layer the exponential dependence of this wave on y is lost, and 
eventually the wave is partly absorbed by the critical layer near y = 0 and, as we shall 
show in part 3, is partly reflected or transmitted as waves of the same type with 
amplitudes depending algebraically on t .  In  addition, there will ultimately be generated 
higher harmonics of the primary disturbance, and hence the reflected wave for large 
positive values of y will be the sum of solutions of (2.1) with exponential factors 

ei(naz+mtLy), Uz(co) (n2a2+m?J = JR'(oo) (m, > O ) ,  (2.4) 

n = 1,2,  . . .. Any transmitted wave niust also contain higher harmonics, in terms ofct, 
and when y is large and negative will be the sum of solutions of (2.1) with exponential 
factors as in (2.4) except that Uz(  -00) (n2a2+mtL) = JR'( -a). On the other hand, 
any wave of the form (2.4) when y is large and negative, but having m, < 0, represents 
a wave incident on the shear layer from below and must be excluded. It should be 
noted that, for sufficiently large n, m7L becomes imaginary and the wave is evanescent. 

We have formulated the problem here for a stably stratified fluid with R ' ( y )  > 0, 
and for convenience have taken U'(y) 0, U ' ( 0 )  + 0, with the ware incident from 
above on the shear layer. If instead the wave is incident from below the shear layer the 
solution may be deduced from that discussed here on replacing x, y, T ,  U(y), R'(y) by 
- x, -y, - I', - U (  -y), R'( - y). This is because, firstly, (2.1) are unaltered by the 
transformation and, secondly, (2.3) becomes a ware incident below the shear layer, 
while (2.4) is now a reflected wave for y < - 1 and a transmitted wave for y > 1. If, 
however, U'(y) < 0 we replace y, U(y), R ' ( y )  by -y, U (  -y), R'( -y) and set m < 0 
in (2.3), (2.4). 

8-2 
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3. The initiation of the incident wave 
I n  $ 2  we discussed the wavelike solutions of (2.1) when ( y (  9 1 and e = 0, but, 

granted the exponential dependence on x, eiax, there is another class of solution that 
corresponds to the algebraic modes of the type (1.2) for which i t  was necessary that 
U’(y )  + 0. I n  fact, when t 9 1 and y B 1 (2.1) also possesses a solution whose leading 
term is proportional to  

IytI-fexp[iax-iaU(co)t f 2i  JytlB (R’(co) a2J)4]. (3.1) 

If y < 0 we replace co by - co. We need to  know whether such solutions are likely t o  
be of importance to  the evolution of the waves or whether they can be regarded as 
indistinguishable from the general background noise produced by the way the wave is 
initiated. This point may be explored by supposing that the wave motion is generated 
by a forced disturbance proportional to eiar a t  y = yo,  where yo is a large positive 
number, the disturbance rising smoothly from zero at  t = 0 to reach a limiting value as 
t+co. Then the governing equations (2.1) may, with e = 0, be solved by a Laplace 
transform with parameter s on the assumption that $ and a$/at are zero a t  t = 0 for 
y < yo .  We take J large and require that $ + 0 as y --f - co, i.e. we neglect the possibility 
that a reflected wave may be generated in the shear layer, and, by using the WKBJ 
method, obtain 

(3.2) 
where F(s) is a given function of s, tending to zero very rapidly as Is(  --too and such 
that sF(s) tends to a non-zero limit as s-+ 0. Apart from these properties the precise 
form of F(s) depends on the way in which the forced disturbance is set up a t  y = yo. 

Let us first examine the steady component of $, namely the contribution to @ 
from (3.2) that  is obtained from the simple pole a t  s = 0. We define the large positive 
number v by 

and this component may then be written eiax r$(y), where 
(3.3) v 2  = - g + J R ’ ( O ) / C ~ ’ ~ ~ ) ,  

$ ( y )  = A ( y )  eivB(y) ,  

and, if y > 0, 
(3.4) 

(3.5) 
where A, is a constant proportional to  limsF(s) (s+ 0). This formula was first given 
by Grimshaw (1976).  Strictly, A is the leading term of an asymptotic expansion in 
descending powers of u whose coefficients are determinate in terms of A ,  B. The form 
for B follows by integration and, since yo is large, we may replace yo by infinity in any 
integral which then converges, and write 
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in agreement with (2.3) since J 1, and as y+ 0’ 

# ( y )  z A,, ( R’(a3) m)‘ (m) U‘(0) 4 yh-ive-ir’Y, 

The constant r- will be required in $4 and is defined here for convenience. Thus we 
have recovered the well-known structure of a wave passing through a shear layer as it 
approaches the critical level y = 0. When y is small and negative the form for q5 can 
most easily be computed by taking s real and small: it  then follows that the integral 
with respect to  y1  acquires a contribution vn as y1 passes through zero from above, 
and so 

(3.10) 

This is in agreement with Booker & Bretherton’s result that an incident wave suffers 
a diminution of amplitude by a factor on passing through the critical level and 
henceforth is negligible on our theory. In  part 1 results analogous to (3.8),  (3.10) were 
obtained for all v when U(y) = tanh y and R ‘ ( y )  = 1, and may be seen to  reduce to  
(3.8),  (3.10) as v-+00. The appropriate values of I’4 in that case are both log 2 .  

It might have been expected that (3.2) would have also yielded eigensolutions of 
the form (1.1) with c = O(J*) and outside the range of U ( y )  as studied by Banks, 
Drazin 2% Zaturska (1976) and Drazin, Zaturska & Banks (1979). However, in all the 
examples that they quote, either y is bounded or R ’ ( y )  -+ 0 as IyI + co, in which cases 
our (3.2) is inappropriate. For the problem considered here we suspect t’hat no such 
eigensolutions exist in the limit yo+ 00. 

It is clear from (3.8), (3.10) that the limit t+co leads to a singularity in # at  y = 0 
and special care must be taken in the neighbourhood of y = 0 when t >> 1. Before 
discussing this in some detail let us examine the contributions to $from the neighbour- 
hoods of the branch points a t  - i a U ( y )  and -iaU(y,,). A straightforward calculation 
shows that the first of these takes the form 

where H is an asymptotic expansion in descending integral powers of t whose co- 
efficients are functions of y and log t ,  the leading term of which is independent of t 
and has modulus unity, and P = (JR‘(y) )* /U’(y) .  Thus the form of $ when t is large 
also includes one of the family of algebraic eigenfunctions discussed in $1. However, 
in general this eigensolution corresponds to a decaying velocity distribution as t -+ 00 
and moreover depends crucially on the detaile of the properties of F ( s ) .  We refer to 
the contribution that (3 .11)  makes to the ultimate form of $ as noise and conclude 
that it cannot be distinguished from the general background noise inherent in problems 
of the kind we are studying here. These eigensolutions could arise from any disturbance 
a t  any time and so it seems unprofitable to study them any further. There is an 
exception to this however. When y is very small the eigenfunction (3.11) depends on the 
behaviour of F ( s )  when s is small, and develops a formal singularity as y -+ 0, being 
proportional to 
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Thus the algebraic eigenfunction near y = 0 is special. It is fed not by the initial 
form of the disturbance at y = yo but by its steady-state form. Moreover, it is an order 
of magnitude larger than the general background disturbance and so we refer to i t  as 
critical-level noise. Finally, a t  any time t it is comparable with or greater than the 
wavelike form when lytl < 1 and so it cannot be ignored in the all-important region 
where the shear flow absorbs the incident wave and which, as we shall see in part 3, 
dominates the nonlinear development of the original disturbance. 

The contribution to  (3.2) from the neighbourhood of the branch point at 

s = -ixU(y,)  

has a form similar to  (3.4) except that V ( y )  is replaced by U(y,) - U ( y )  and A ,  in (3.5) 
is a function of t such that A ,  cc t-4. Hence the contribution to  $ tends to  zero uni- 
formly as t -+ co in the shear layer and may safely be neglected. 

It is clear that (3.11) is inadequate when U ( y )  = U(c0). I n  this situation the 
appropriate form of the eigenfunction is as in (3.1).  I n  fact the derivative with respect 
to  t of the expression in (3.1) with y replaced by yo-  y may be obtained from (3.2) 
by taking U ,  R‘ to  be constant and examining the contribution to  (3.2) when t 4 1 
from the saddle points at s = sf, where 

S& = - i ~ l U ( o ~ )  ~i i (yo-y)3(a2JR’(c0) ) t t -3 .  (3.13) 

4. The reflection and transmission coefficients 
I n  Q 3 we studied an initial-value problem with forcing a t  a large finite value of y .  

The purpose of this was to  show that in general there are two types of eigensolutions 
when t >> 1, one wavelike and another to  which we referred as noise. When Iytl 4 1 
the noise is negligible in comparison with the wave, but in the neighbourhood of y = 0 
this is not so and the resulting critical-level noise turns out to be crucial in returning 
wave energy to the region I yI = O( 1 ) .  This is a nonlinear effect and will be discussed 
in part 3. There we shall need the further solutions of the linear steady forms of (2.1) 
which are subsequently generated, a t  times t = O(c-f), by the match with the non- 
linear solution that holds in the critical layer. These were exponentially small when J 
is large in the initial-value problem of Q 3 as only the linear terms were retained even 
near y = 0, but as we shall subsequently require them we shall derive them here. They 
are the solutions that correspond to reflected and transmitted waves as discussed in 
5 2, and will have the behaviour described there when IyI $ 1. I n  (2.1), with a/& and E 

set equal to zero we write, with n a positive integer to allow for higher harmonics as 
required, @ = eniax @,(y, t )  + c.c., 

where 

and C.C. denotes the complex conjugate. We now seek solutions of (4.2) of the form 

(4.1) 

(4.2) uyY) (% - nZx2@,) - u ( y )  ~ “ ( y )  +, + J R ’ ( ~ )  $m = o 
3Y2 

$,(y, t )  = A,,(y, t )  eivB1(V)+An2(y, t )  eivB8(Y), (4.3) 

where Anl, A,, are functions of y and slowly varying functions of t ,  and u is defined 
in (3.3) (again u 4 1). There will also be algebraic eigensolutions for $ of the form 
(3.11), but the resulting noise is significant only in the neighbourhood of y = 0 where 



Gravity-wave critical level. Part 2 225 

they must be retained. However, here where y = O( 1) we do not require their precise 
form so do not calculate them. The functions A,,, A,, will be expressible in series in 
descending powers of v and it is easily found from t’he coefficient of v 2  in (4.2) that  

(4.4) 

which we integrate as 

according as y >< 0 ,  with B, = - B,. We note that B, corresponds to B in (3.6). The 
coefficient of v in (4.2) then shows that, to  leading order in v, A,, cc IBil-4 and 
A,, x I BL I -*, and we take 

according as y >< 0,  where a$,, a:, are arbitrary slowly varying functions of t .  Thus, 
when y 1, 

since from (2.3) for fixed 01 and v 9 1 we have 

a n d f o r y <  - 1  

where U2(  -m)m!. = V ~ U ’ ~ ( O ) R ’ (  -oo)/R’(O). When IyI << 1 the corresponding forms 

$,(y, t )  M a;,(t) eim+y + a$,(t) e-im+y (am+ > 0 ) ,  (4.7) 

Uz(00) m$ = vZU’z(0) R’(co)/R’(O), 

$m(y,  t )  M aGl(t) e-im-y + a- n2 ( t )  eim-y (am- > 0 ) ,  (4.8) 

when y > 0, and 

when y < 0. Here I?* are the constants defined in (3.9). 
The relevance of (4.6) to (4.10) is as follows. We are going to  assume that, when 

t 3 1, far from the shear layer there is maintained an imposed incident wave of the 
form eiuxq5(y), where q5 is defined in (3.7). The way in which such a wave can develop as 
t increases is discussed in $3. This wave is represented by the second term in (4.7) 
with n = 1 and a constant value for al+z(t). The first term in (4.7) represents a wave 
reflected above the critical layer, and in (4.8) the second term represents a wave 
transmitted through the layer. I n  $ 3  we showed that when t is of order unity the 
transmitted wave is exponentially small in v and in part I we showed that this is also 
true for the reflected wave. The reason that we are displaying these solutions here is 
that when t is no longer of order unity, specifically when t = O(E-%), 6 being the ampli- 
tude of the imposed incident wave, they are generated by the nonlinear terms t,hat 
must be retained in the neighbourhood of y = 0. The functions a&, a, develop as 
functions of 7 (=  €bat); a;, must be zero for all n and 7, as it implies the presence of a 
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wave incident from below the shear layer, and azz = 1 if n = 1 and r = 0 and zero 
otherwise, since the imposed wave is to remain of constant amplitude. If we define 
Bn(7), YrL(r)  to be the reflection and transmission coefficients associated with the 
harmonic enZm then we shall have 

(4.11) 
$n(y,t) N” 9?n(~)eim+Y+8nle-im-Y as y-tm, 

$.,(y, t )  % Fn(r) eim-v as y-f -a, 

and from (4.9), (4.10) correspondingly, as y+O, 

as y -+ 0+, and 

as y-+ 0-. 
We shall show in part 3 that  Bn(7), Yn(r )  are of the form 

m m 

9?n(7) = X grn(7), f ln(r) = Z Zn(7)> 
r = n  r = n  

(4.13) 

(4.14) 

where grn, qm are of the form 7s(p-1) times a function of T ~ ”  and ciu. I n  part 1 we showed 
that Yll, which are independent of T ,  are exponentially small in v .  The first non- 
zero functions are B31, 9?42, which we find in part 3 for v 9 1 and note that F31 and Y42 
are exponentially small in v. It emerges that 9i’31 = O ( ~ ~ + ~ i ~ / v )  and 9242 = 0(rzi”+B/v~). 
Both and Y31 were also found in part 1. The first non-zero transmission coefficient 
turns out to be Y9,. 

I n  part 1 the results analogous to  (4.12), (4.13) were obtained for all v for 

U(y) = tanhy and R’(y) = 1, 

and may be seen to  reduce to  (4.12), (4.13) when v & 1 with an error that  is O(e-v”). 
Since the error in (4.3) is in the functions Anl, An2, which can be expressed as series in 
inverse powers of v ,  of which (4.6) gives the first terms, and not in B,, B,, we expect 
that  the splitting of the incident and transmitted waves as evident in (4.12), (4.13) 
holds with an error that  is again exponentially small in v. This splitting is of great 
import for the analysis in the critical layer, for it means that to the critical layer a 
term of the form y*+iu for y > 0 implies a reflected wave, yt-iv represents the incident 
wave and, for y < 0, Iyl&-iv implies a transmitted wave and Iyl+fi” must not occur. 
The form of the exponentially small error cannot be derived from the asymptotic 
analysis presented here. 

As in part 1 the reflection and transmission coefficients are determined by the match 
with the solution that holds in the neighbourhood of y = 0. In  3 5 the properties of the 
linearized solution that holds in the critical layer are examined when v 9 1. 

5. The linearized theory in the neighbourhood of the critical layer 
From $9 3 and 4 it is clear that  special care must be taken in t’he neighbourhood of 

y = 0 to elucidate the role of the algebraic eigenfunction and its relation to  the critical 
level absorption of the wave. I n  this section we find the form of t,he linearized solution 
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near y = 0 that corresponds to an outer solution of the form (4.1) with n = 1 and 
$,(y,t) = $,,(y) independent o f t .  Thus when IyI % 1 the outer solution consists of 
the prescribed incident wave, and possible reflected and transmitted waves as in 
(4.11), with a,, = I and constant reflection and transmission coefficients W,,, TI,; 
when IyI < I it takes the forms (4.12), (4.13). The solution near y = 0 can be obtained 
from (3.2), which was derived for a particular set of initial conditions, or from the 
exact solution in part 1 in the limit v 4 co. However, it is instructive to re-derive it by 
an asymptotic approach, as this is the technique to  be used in the nonlinear analysis. 
The results can then be shown to be consistent with those of other methods and the 
results of 93. I n  (2.1) we set 6 = 0 and y? = eiax @(y, t ) /U’(O) + C.C. and replace U(y), 
R’(y) by their leading-order terms in the critical layer with a/ay B a/ax. Then @ 
satisfies 

and may be written as the sum @ = 0- + @+, where @-, @+ satisfy 

($ + iaU’(0) y -- - iaU’(0) (4 - iv) 0- = 0, 1 a: 
(;+iaU’(o)y ) --iaU’(0) a: (++iv)CD+ = 0)  (5.3) 

since the operator on CD in (5.1) is the product of the commuting operators on @* 
in ( 5 . 2 ) ,  (5.3). The advantage of this additive split of @ is that, since apossible solution 
for @- has @- K lylg-iv as IyI -+a, and a possible solution for @+ has CD, K Iyl*+iv as 
lyI -too, it is, as may be seen from (4.12), (4.13)) @- that  will match with the incident 
wave and the transmitted wave (if any) outside the critical layer, and @+ that  will 
match with the reflected wave. 

I n  part 1,  the solution of (5.1) was obtained for all v by taking a Laplace transform 
in t ,  and the functions @* expressed as integrals from which i t  may easily be seen that 
@+ are of similarity form; with hindsight we therefore write 

@* = (at)-i’i”f*(r), y = aU’(O)yt /v ,  (5.4) 

the powers o f t  being determined by the fact that 0- is to  match with the incident 
wave in (4.12) and the transmitted wave in (4.13) as 171 +GO, and CD+ is to match with 
the reflected wave in (4.12). On substitution into (5.2),  (5.3) we find that 

We consider the equations for f- and, using the WKBJ method, obtain a solution 
for v 9 1 in the form 

f-(r) = c - ~  I~l+e-- iv lo@@ + c  -2e-iuv/(r- 1 ) )  ( 5 . 6 )  

where c-,, cP2 are constants. The first term here is actually a multiple of r$--ip and is an 
exact solution corresponding to the exact solution of (5.2).  This solution is clearly 
unacceptable in any region including the origin. The second term of (5.6) is the leading 
term of an asymptotic expansion in descending powers of v, the coefficients of which 
are similar to that of the leading term. The singularity a t  7 = 1 is not a property of the 
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basic equation (5 .5 )  for f -  but is a feature of the asymptotic analysis and can be 
smoothed out in a boundary layer a t  7 = 1 .  To achieve this we write 

where a- and ,5- are constants. 

7 - 1 = O(u-6). Let us write 
We are now in possession of the solution in the three regions 7 > 1, 7 < i and 

f-(r) E a- + b- e-i”v/(7 - 1) when 7 > 1 ,  (5.10) 

f-(r) E d- ec ivv / (V - 1) when 7 < 1 ,  (5.11) 

where a_, b-, d- are constants, and take f -  as given by (5.7),  (5.9) when 7 - 1 = O(u-4). 
The six constants a-, b-, d-, a-, p- ,  Fll may now be focnd by matching these solutions 
together and using the imposed conditions as 7 3 co. From the match as 7 + 1- and 
y+ -a we have 

p-  = 0, d- = iaJ2u)-4 (5.12) 

and from the match as 7 --f 1+ and {-+ + co we have 

b- = d-, a- = a - n&e-i”-fi”. (5.13) 

The match of f-(q) as 7-f f c o  with the incident-wave contribution to  $11, as given 

(5.14) 

and that between f- and $11, as given by (4.13) as 7-f - co. then shows that 

YI1 = 0. (5.15) 

The solution for f+ may be obtained in a similar way. The boundary layer is now a t  
7 = - 1 but, as there is no forcing, all the corresponding constants, including gIl, are 
zero, so that f+ itself is zero. 

I n  part I it was shown that 9ZIl, Fll are both exponentially small and O(e-”=) for 
u 9 1.  The method of matched asymptotic expansions employed here will not yield 
these exponentially small terms but we may infer that  they are both smaller than any 
negative power of v from the fact that  formally (5.10), (5.11) may be made exact by 
replacing 6-, d- by series in inverse powers of u,  but a- is unaffected. A similar comment 
applies to the corresponding terms off+. None of these algebraic terms will give a 
contribution to gIl, Fll. 

The solution that we have derived in this section requires comment. We have shown 
that, when aU‘(0) yt > v and v $ 1, 

(5.16) 
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where a- is given by (5.14), but that, when aU‘(0) yt < v ,  

(5.17) 

these two solutions being related by a boundary layer a t  7 = 1 of thickness O(w-4). The 
incident wave is evident as the first term of (5.16) and the second term is the critical- 
layer noise described in $3 .  As shown there, the coefficient of this term is in fact 
independent of the initial conditions. 

The corresponding form for T is, in each region, 

(5.18) 

with a relative error O(v- l ) .  

(5.3), which are proportional to 
The alternative way of deriving (5.16), (5.17) is to  use the exact solutions of (5.2), 

so du, (5.19) 

taking the upper sign for (5.2) and the lower sign for (5.3), and examine the behaviour 
of the integrals by the method of steepest descent. I n  part 1 the problem was worked 
with a multiple of the exact form of the integral with the upper sign for 1// .e-zaX,  it being 
shown that there, as here, the coefficient of that with the lower sign is exponentially 
small. 

A physical interpretation of the solution we have obtained in this section and in $ 4  
may be made as follows. The forcing at  y = co outside the shear layer generates a 
stream function O(c)  and velocity components (qr, qy) along and perpendicular to  the 
shear layer with q, = O(sv)  and qy = O ( E )  when y = O(1); the disturbance at  large 
time is dominated by the incoming wave. Since qx must be small we note that an addi- 
tional condition is that EW < 1. However, as y decreases the structure of the wave is 
modified by the shear, and qz increases although qy decreases. Just behind the wave 
front a t  y = v(aU’(O)t)-l ,  where t B w, the stream function is proportional to cy3+’ 
and the tangential velocity q, is O(e(wt)B), though the normal velocity qy is only 
O ( ~ ( w / t ) a ) .  In  addition, noise is generated a t  the shear layer but generally its amplitude 
decays with t ,  the associated tangential and normal velocity components being 
O(ewt-:) and O(evt-i), respectively. Near the wave front they increase rapidly in size, 
however, and when 7 = O(1) are O(&) and 0(et-4) (see (5.16)). As 7-f 1 the velocity 
components associated with the CL-noise are increased further by a factor O ( v i ) ,  the 
two terms of (5.16) become of the same order of magnitude, and the noise contribution 
is comparable with that due to the incoming wave. When 7 < 1 only these components 
are present and the CL-noise can be interpreted as the precursor of the wave front. 
I n  a region 9 - 1 = O(v-h) the magnitude of the perturbation is reduced abruptly by 
a factor O(w-t),  and the hitherto-dominant wave is entirely replaced by a disturbance 
propagating in the x-direction with the local mean speed of the fluid. 

The structure of @ near 7 = 1 is classical for wave fronts in a dispersive medium, 
the transition function g- in (5.9) being a Fresnel integral. Examples abound, and an 
interesting one occurs in the theory of lee-wave trains in rotating fluids (McIntyre 
1972). 

* at e-iU’(0)gu 
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